direct product, abelian, monomial, 2-elementary
Aliases: C24×C12, SmallGroup(192,1530)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C24×C12 |
C1 — C24×C12 |
C1 — C24×C12 |
Subgroups: 1362, all normal (8 characteristic)
C1, C2, C2 [×30], C3, C4 [×16], C22 [×155], C6, C6 [×30], C2×C4 [×120], C23 [×155], C12 [×16], C2×C6 [×155], C22×C4 [×140], C24 [×31], C2×C12 [×120], C22×C6 [×155], C23×C4 [×30], C25, C22×C12 [×140], C23×C6 [×31], C24×C4, C23×C12 [×30], C24×C6, C24×C12
Quotients:
C1, C2 [×31], C3, C4 [×16], C22 [×155], C6 [×31], C2×C4 [×120], C23 [×155], C12 [×16], C2×C6 [×155], C22×C4 [×140], C24 [×31], C2×C12 [×120], C22×C6 [×155], C23×C4 [×30], C25, C22×C12 [×140], C23×C6 [×31], C24×C4, C23×C12 [×30], C24×C6, C24×C12
Generators and relations
G = < a,b,c,d,e | a2=b2=c2=d2=e12=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, de=ed >
(1 72)(2 61)(3 62)(4 63)(5 64)(6 65)(7 66)(8 67)(9 68)(10 69)(11 70)(12 71)(13 133)(14 134)(15 135)(16 136)(17 137)(18 138)(19 139)(20 140)(21 141)(22 142)(23 143)(24 144)(25 184)(26 185)(27 186)(28 187)(29 188)(30 189)(31 190)(32 191)(33 192)(34 181)(35 182)(36 183)(37 153)(38 154)(39 155)(40 156)(41 145)(42 146)(43 147)(44 148)(45 149)(46 150)(47 151)(48 152)(49 129)(50 130)(51 131)(52 132)(53 121)(54 122)(55 123)(56 124)(57 125)(58 126)(59 127)(60 128)(73 94)(74 95)(75 96)(76 85)(77 86)(78 87)(79 88)(80 89)(81 90)(82 91)(83 92)(84 93)(97 166)(98 167)(99 168)(100 157)(101 158)(102 159)(103 160)(104 161)(105 162)(106 163)(107 164)(108 165)(109 169)(110 170)(111 171)(112 172)(113 173)(114 174)(115 175)(116 176)(117 177)(118 178)(119 179)(120 180)
(1 122)(2 123)(3 124)(4 125)(5 126)(6 127)(7 128)(8 129)(9 130)(10 131)(11 132)(12 121)(13 157)(14 158)(15 159)(16 160)(17 161)(18 162)(19 163)(20 164)(21 165)(22 166)(23 167)(24 168)(25 82)(26 83)(27 84)(28 73)(29 74)(30 75)(31 76)(32 77)(33 78)(34 79)(35 80)(36 81)(37 113)(38 114)(39 115)(40 116)(41 117)(42 118)(43 119)(44 120)(45 109)(46 110)(47 111)(48 112)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 61)(56 62)(57 63)(58 64)(59 65)(60 66)(85 190)(86 191)(87 192)(88 181)(89 182)(90 183)(91 184)(92 185)(93 186)(94 187)(95 188)(96 189)(97 142)(98 143)(99 144)(100 133)(101 134)(102 135)(103 136)(104 137)(105 138)(106 139)(107 140)(108 141)(145 177)(146 178)(147 179)(148 180)(149 169)(150 170)(151 171)(152 172)(153 173)(154 174)(155 175)(156 176)
(1 179)(2 180)(3 169)(4 170)(5 171)(6 172)(7 173)(8 174)(9 175)(10 176)(11 177)(12 178)(13 26)(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 33)(21 34)(22 35)(23 36)(24 25)(37 60)(38 49)(39 50)(40 51)(41 52)(42 53)(43 54)(44 55)(45 56)(46 57)(47 58)(48 59)(61 120)(62 109)(63 110)(64 111)(65 112)(66 113)(67 114)(68 115)(69 116)(70 117)(71 118)(72 119)(73 159)(74 160)(75 161)(76 162)(77 163)(78 164)(79 165)(80 166)(81 167)(82 168)(83 157)(84 158)(85 105)(86 106)(87 107)(88 108)(89 97)(90 98)(91 99)(92 100)(93 101)(94 102)(95 103)(96 104)(121 146)(122 147)(123 148)(124 149)(125 150)(126 151)(127 152)(128 153)(129 154)(130 155)(131 156)(132 145)(133 185)(134 186)(135 187)(136 188)(137 189)(138 190)(139 191)(140 192)(141 181)(142 182)(143 183)(144 184)
(1 22)(2 23)(3 24)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)(10 19)(11 20)(12 21)(25 169)(26 170)(27 171)(28 172)(29 173)(30 174)(31 175)(32 176)(33 177)(34 178)(35 179)(36 180)(37 95)(38 96)(39 85)(40 86)(41 87)(42 88)(43 89)(44 90)(45 91)(46 92)(47 93)(48 94)(49 104)(50 105)(51 106)(52 107)(53 108)(54 97)(55 98)(56 99)(57 100)(58 101)(59 102)(60 103)(61 143)(62 144)(63 133)(64 134)(65 135)(66 136)(67 137)(68 138)(69 139)(70 140)(71 141)(72 142)(73 152)(74 153)(75 154)(76 155)(77 156)(78 145)(79 146)(80 147)(81 148)(82 149)(83 150)(84 151)(109 184)(110 185)(111 186)(112 187)(113 188)(114 189)(115 190)(116 191)(117 192)(118 181)(119 182)(120 183)(121 165)(122 166)(123 167)(124 168)(125 157)(126 158)(127 159)(128 160)(129 161)(130 162)(131 163)(132 164)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192)
G:=sub<Sym(192)| (1,72)(2,61)(3,62)(4,63)(5,64)(6,65)(7,66)(8,67)(9,68)(10,69)(11,70)(12,71)(13,133)(14,134)(15,135)(16,136)(17,137)(18,138)(19,139)(20,140)(21,141)(22,142)(23,143)(24,144)(25,184)(26,185)(27,186)(28,187)(29,188)(30,189)(31,190)(32,191)(33,192)(34,181)(35,182)(36,183)(37,153)(38,154)(39,155)(40,156)(41,145)(42,146)(43,147)(44,148)(45,149)(46,150)(47,151)(48,152)(49,129)(50,130)(51,131)(52,132)(53,121)(54,122)(55,123)(56,124)(57,125)(58,126)(59,127)(60,128)(73,94)(74,95)(75,96)(76,85)(77,86)(78,87)(79,88)(80,89)(81,90)(82,91)(83,92)(84,93)(97,166)(98,167)(99,168)(100,157)(101,158)(102,159)(103,160)(104,161)(105,162)(106,163)(107,164)(108,165)(109,169)(110,170)(111,171)(112,172)(113,173)(114,174)(115,175)(116,176)(117,177)(118,178)(119,179)(120,180), (1,122)(2,123)(3,124)(4,125)(5,126)(6,127)(7,128)(8,129)(9,130)(10,131)(11,132)(12,121)(13,157)(14,158)(15,159)(16,160)(17,161)(18,162)(19,163)(20,164)(21,165)(22,166)(23,167)(24,168)(25,82)(26,83)(27,84)(28,73)(29,74)(30,75)(31,76)(32,77)(33,78)(34,79)(35,80)(36,81)(37,113)(38,114)(39,115)(40,116)(41,117)(42,118)(43,119)(44,120)(45,109)(46,110)(47,111)(48,112)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,61)(56,62)(57,63)(58,64)(59,65)(60,66)(85,190)(86,191)(87,192)(88,181)(89,182)(90,183)(91,184)(92,185)(93,186)(94,187)(95,188)(96,189)(97,142)(98,143)(99,144)(100,133)(101,134)(102,135)(103,136)(104,137)(105,138)(106,139)(107,140)(108,141)(145,177)(146,178)(147,179)(148,180)(149,169)(150,170)(151,171)(152,172)(153,173)(154,174)(155,175)(156,176), (1,179)(2,180)(3,169)(4,170)(5,171)(6,172)(7,173)(8,174)(9,175)(10,176)(11,177)(12,178)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,25)(37,60)(38,49)(39,50)(40,51)(41,52)(42,53)(43,54)(44,55)(45,56)(46,57)(47,58)(48,59)(61,120)(62,109)(63,110)(64,111)(65,112)(66,113)(67,114)(68,115)(69,116)(70,117)(71,118)(72,119)(73,159)(74,160)(75,161)(76,162)(77,163)(78,164)(79,165)(80,166)(81,167)(82,168)(83,157)(84,158)(85,105)(86,106)(87,107)(88,108)(89,97)(90,98)(91,99)(92,100)(93,101)(94,102)(95,103)(96,104)(121,146)(122,147)(123,148)(124,149)(125,150)(126,151)(127,152)(128,153)(129,154)(130,155)(131,156)(132,145)(133,185)(134,186)(135,187)(136,188)(137,189)(138,190)(139,191)(140,192)(141,181)(142,182)(143,183)(144,184), (1,22)(2,23)(3,24)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(12,21)(25,169)(26,170)(27,171)(28,172)(29,173)(30,174)(31,175)(32,176)(33,177)(34,178)(35,179)(36,180)(37,95)(38,96)(39,85)(40,86)(41,87)(42,88)(43,89)(44,90)(45,91)(46,92)(47,93)(48,94)(49,104)(50,105)(51,106)(52,107)(53,108)(54,97)(55,98)(56,99)(57,100)(58,101)(59,102)(60,103)(61,143)(62,144)(63,133)(64,134)(65,135)(66,136)(67,137)(68,138)(69,139)(70,140)(71,141)(72,142)(73,152)(74,153)(75,154)(76,155)(77,156)(78,145)(79,146)(80,147)(81,148)(82,149)(83,150)(84,151)(109,184)(110,185)(111,186)(112,187)(113,188)(114,189)(115,190)(116,191)(117,192)(118,181)(119,182)(120,183)(121,165)(122,166)(123,167)(124,168)(125,157)(126,158)(127,159)(128,160)(129,161)(130,162)(131,163)(132,164), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192)>;
G:=Group( (1,72)(2,61)(3,62)(4,63)(5,64)(6,65)(7,66)(8,67)(9,68)(10,69)(11,70)(12,71)(13,133)(14,134)(15,135)(16,136)(17,137)(18,138)(19,139)(20,140)(21,141)(22,142)(23,143)(24,144)(25,184)(26,185)(27,186)(28,187)(29,188)(30,189)(31,190)(32,191)(33,192)(34,181)(35,182)(36,183)(37,153)(38,154)(39,155)(40,156)(41,145)(42,146)(43,147)(44,148)(45,149)(46,150)(47,151)(48,152)(49,129)(50,130)(51,131)(52,132)(53,121)(54,122)(55,123)(56,124)(57,125)(58,126)(59,127)(60,128)(73,94)(74,95)(75,96)(76,85)(77,86)(78,87)(79,88)(80,89)(81,90)(82,91)(83,92)(84,93)(97,166)(98,167)(99,168)(100,157)(101,158)(102,159)(103,160)(104,161)(105,162)(106,163)(107,164)(108,165)(109,169)(110,170)(111,171)(112,172)(113,173)(114,174)(115,175)(116,176)(117,177)(118,178)(119,179)(120,180), (1,122)(2,123)(3,124)(4,125)(5,126)(6,127)(7,128)(8,129)(9,130)(10,131)(11,132)(12,121)(13,157)(14,158)(15,159)(16,160)(17,161)(18,162)(19,163)(20,164)(21,165)(22,166)(23,167)(24,168)(25,82)(26,83)(27,84)(28,73)(29,74)(30,75)(31,76)(32,77)(33,78)(34,79)(35,80)(36,81)(37,113)(38,114)(39,115)(40,116)(41,117)(42,118)(43,119)(44,120)(45,109)(46,110)(47,111)(48,112)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,61)(56,62)(57,63)(58,64)(59,65)(60,66)(85,190)(86,191)(87,192)(88,181)(89,182)(90,183)(91,184)(92,185)(93,186)(94,187)(95,188)(96,189)(97,142)(98,143)(99,144)(100,133)(101,134)(102,135)(103,136)(104,137)(105,138)(106,139)(107,140)(108,141)(145,177)(146,178)(147,179)(148,180)(149,169)(150,170)(151,171)(152,172)(153,173)(154,174)(155,175)(156,176), (1,179)(2,180)(3,169)(4,170)(5,171)(6,172)(7,173)(8,174)(9,175)(10,176)(11,177)(12,178)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,25)(37,60)(38,49)(39,50)(40,51)(41,52)(42,53)(43,54)(44,55)(45,56)(46,57)(47,58)(48,59)(61,120)(62,109)(63,110)(64,111)(65,112)(66,113)(67,114)(68,115)(69,116)(70,117)(71,118)(72,119)(73,159)(74,160)(75,161)(76,162)(77,163)(78,164)(79,165)(80,166)(81,167)(82,168)(83,157)(84,158)(85,105)(86,106)(87,107)(88,108)(89,97)(90,98)(91,99)(92,100)(93,101)(94,102)(95,103)(96,104)(121,146)(122,147)(123,148)(124,149)(125,150)(126,151)(127,152)(128,153)(129,154)(130,155)(131,156)(132,145)(133,185)(134,186)(135,187)(136,188)(137,189)(138,190)(139,191)(140,192)(141,181)(142,182)(143,183)(144,184), (1,22)(2,23)(3,24)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(12,21)(25,169)(26,170)(27,171)(28,172)(29,173)(30,174)(31,175)(32,176)(33,177)(34,178)(35,179)(36,180)(37,95)(38,96)(39,85)(40,86)(41,87)(42,88)(43,89)(44,90)(45,91)(46,92)(47,93)(48,94)(49,104)(50,105)(51,106)(52,107)(53,108)(54,97)(55,98)(56,99)(57,100)(58,101)(59,102)(60,103)(61,143)(62,144)(63,133)(64,134)(65,135)(66,136)(67,137)(68,138)(69,139)(70,140)(71,141)(72,142)(73,152)(74,153)(75,154)(76,155)(77,156)(78,145)(79,146)(80,147)(81,148)(82,149)(83,150)(84,151)(109,184)(110,185)(111,186)(112,187)(113,188)(114,189)(115,190)(116,191)(117,192)(118,181)(119,182)(120,183)(121,165)(122,166)(123,167)(124,168)(125,157)(126,158)(127,159)(128,160)(129,161)(130,162)(131,163)(132,164), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192) );
G=PermutationGroup([(1,72),(2,61),(3,62),(4,63),(5,64),(6,65),(7,66),(8,67),(9,68),(10,69),(11,70),(12,71),(13,133),(14,134),(15,135),(16,136),(17,137),(18,138),(19,139),(20,140),(21,141),(22,142),(23,143),(24,144),(25,184),(26,185),(27,186),(28,187),(29,188),(30,189),(31,190),(32,191),(33,192),(34,181),(35,182),(36,183),(37,153),(38,154),(39,155),(40,156),(41,145),(42,146),(43,147),(44,148),(45,149),(46,150),(47,151),(48,152),(49,129),(50,130),(51,131),(52,132),(53,121),(54,122),(55,123),(56,124),(57,125),(58,126),(59,127),(60,128),(73,94),(74,95),(75,96),(76,85),(77,86),(78,87),(79,88),(80,89),(81,90),(82,91),(83,92),(84,93),(97,166),(98,167),(99,168),(100,157),(101,158),(102,159),(103,160),(104,161),(105,162),(106,163),(107,164),(108,165),(109,169),(110,170),(111,171),(112,172),(113,173),(114,174),(115,175),(116,176),(117,177),(118,178),(119,179),(120,180)], [(1,122),(2,123),(3,124),(4,125),(5,126),(6,127),(7,128),(8,129),(9,130),(10,131),(11,132),(12,121),(13,157),(14,158),(15,159),(16,160),(17,161),(18,162),(19,163),(20,164),(21,165),(22,166),(23,167),(24,168),(25,82),(26,83),(27,84),(28,73),(29,74),(30,75),(31,76),(32,77),(33,78),(34,79),(35,80),(36,81),(37,113),(38,114),(39,115),(40,116),(41,117),(42,118),(43,119),(44,120),(45,109),(46,110),(47,111),(48,112),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,61),(56,62),(57,63),(58,64),(59,65),(60,66),(85,190),(86,191),(87,192),(88,181),(89,182),(90,183),(91,184),(92,185),(93,186),(94,187),(95,188),(96,189),(97,142),(98,143),(99,144),(100,133),(101,134),(102,135),(103,136),(104,137),(105,138),(106,139),(107,140),(108,141),(145,177),(146,178),(147,179),(148,180),(149,169),(150,170),(151,171),(152,172),(153,173),(154,174),(155,175),(156,176)], [(1,179),(2,180),(3,169),(4,170),(5,171),(6,172),(7,173),(8,174),(9,175),(10,176),(11,177),(12,178),(13,26),(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,33),(21,34),(22,35),(23,36),(24,25),(37,60),(38,49),(39,50),(40,51),(41,52),(42,53),(43,54),(44,55),(45,56),(46,57),(47,58),(48,59),(61,120),(62,109),(63,110),(64,111),(65,112),(66,113),(67,114),(68,115),(69,116),(70,117),(71,118),(72,119),(73,159),(74,160),(75,161),(76,162),(77,163),(78,164),(79,165),(80,166),(81,167),(82,168),(83,157),(84,158),(85,105),(86,106),(87,107),(88,108),(89,97),(90,98),(91,99),(92,100),(93,101),(94,102),(95,103),(96,104),(121,146),(122,147),(123,148),(124,149),(125,150),(126,151),(127,152),(128,153),(129,154),(130,155),(131,156),(132,145),(133,185),(134,186),(135,187),(136,188),(137,189),(138,190),(139,191),(140,192),(141,181),(142,182),(143,183),(144,184)], [(1,22),(2,23),(3,24),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18),(10,19),(11,20),(12,21),(25,169),(26,170),(27,171),(28,172),(29,173),(30,174),(31,175),(32,176),(33,177),(34,178),(35,179),(36,180),(37,95),(38,96),(39,85),(40,86),(41,87),(42,88),(43,89),(44,90),(45,91),(46,92),(47,93),(48,94),(49,104),(50,105),(51,106),(52,107),(53,108),(54,97),(55,98),(56,99),(57,100),(58,101),(59,102),(60,103),(61,143),(62,144),(63,133),(64,134),(65,135),(66,136),(67,137),(68,138),(69,139),(70,140),(71,141),(72,142),(73,152),(74,153),(75,154),(76,155),(77,156),(78,145),(79,146),(80,147),(81,148),(82,149),(83,150),(84,151),(109,184),(110,185),(111,186),(112,187),(113,188),(114,189),(115,190),(116,191),(117,192),(118,181),(119,182),(120,183),(121,165),(122,166),(123,167),(124,168),(125,157),(126,158),(127,159),(128,160),(129,161),(130,162),(131,163),(132,164)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192)])
Matrix representation ►G ⊆ GL5(𝔽13)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 12 |
3 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
G:=sub<GL(5,GF(13))| [1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,1],[1,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12],[3,0,0,0,0,0,5,0,0,0,0,0,8,0,0,0,0,0,12,0,0,0,0,0,12] >;
192 conjugacy classes
class | 1 | 2A | ··· | 2AE | 3A | 3B | 4A | ··· | 4AF | 6A | ··· | 6BJ | 12A | ··· | 12BL |
order | 1 | 2 | ··· | 2 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
192 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | |||||
image | C1 | C2 | C2 | C3 | C4 | C6 | C6 | C12 |
kernel | C24×C12 | C23×C12 | C24×C6 | C24×C4 | C23×C6 | C23×C4 | C25 | C24 |
# reps | 1 | 30 | 1 | 2 | 32 | 60 | 2 | 64 |
In GAP, Magma, Sage, TeX
C_2^4\times C_{12}
% in TeX
G:=Group("C2^4xC12");
// GroupNames label
G:=SmallGroup(192,1530);
// by ID
G=gap.SmallGroup(192,1530);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-2,672]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^12=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations